电源设计小贴士:MLC 电容器常见缺陷的规避方法
因其小尺寸、低等效串联电阻(ESR)、低成本、高可靠性和高纹波电流能力,多层陶瓷(MLC)电容器在电源电子产品中变得极为普遍。一般而言,它们用在电解质电容器leiu中,以增强系统性能。相比使用电解电容器铝氧化绝缘材料时相对介电常数为10的电解质,MLC电容器拥有高相对介电常数材料(2000-3000)的优势。这一差异很重要,因为电容直接与介电常数相关。在电解质的正端,设置板间隔的氧化铝厚度小于陶瓷材料,从而带来更高的电容密度。
温度和DC偏压变化时,陶瓷电容器介电常数不稳定,因此我们需要在设计过程中理解它的这种特性。高介电常数陶瓷电容器被划分为2类。图1显示了如何以3位数描述方法来对其分类,诸如:Z5U、X5R和X7R等。例如,Z5U电容器额定温度值范围为+10到+85℃,其变化范围为+22/~56%。再稳定的电介质也存在一定的温度电容变化范围。
图1:2类电介质使用3位数进行分类。注意观察其容差!
当我们研究偏压电容依赖度时,情况变得更加糟糕。图2显示了一个22μF、6.3伏、X5S电容器的偏压依赖度。我们常常会把它用作一个3.3伏负载点(POL)稳压器的输出电容器。3.3伏时电容降低25%,导致输出纹波增加,从而对控制环路带宽产生巨大影响。如果您曾经在5伏输出时使用这种电容器,则在温度和偏压之间,电容降低达60%之多,并且由于2:1环路带宽增加,可能产生一个不稳定的电源。许多陶瓷电容器厂商都没有详细说明这一问题。
图2:注意电容所施加偏压变化而降低
陶瓷电容器的第二个潜在缺陷是,它们具有相对较小的
上一篇:薄膜电容分类及应用